253 research outputs found

    Classical entanglement: Oxymoron or resource?

    Full text link
    In this work we review and further develop the controversial concept of "classical entanglement" in optical beams. We present a unified theory for different kinds of light beams exhibiting classical entanglement and we indicate several possible extensions of the concept. Our results shed new light upon the physics at the debated border between the classical and the quantum representations of the world.Comment: 9 pages, 6 figures. Version submitted to PR

    Quantum Cloning of Binary Coherent States - Optimal Transformations and Practical Limits

    Get PDF
    The notions of qubits and coherent states correspond to different physical systems and are described by specific formalisms. Qubits are associated with a two-dimensional Hilbert space and can be illustrated on the Bloch sphere. In contrast, the underlying Hilbert space of coherent states is infinite-dimensional and the states are typically represented in phase space. For the particular case of binary coherent state alphabets these otherwise distinct formalisms can equally be applied. We capitalize this formal connection to analyse the properties of optimally cloned binary coherent states. Several practical and near-optimal cloning schemes are discussed and the associated fidelities are compared to the performance of the optimal cloner.Comment: 12 pages, 12 figure

    Transverse angular momentum of photons

    Full text link
    We develop the quantum theory of transverse angular momentum of light beams. The theory applies to paraxial and quasi-paraxial photon beams in vacuum, and reproduces the known results for classical beams when applied to coherent states of the field. Both the Poynting vector, alias the linear momentum, and the angular momentum quantum operators of a light beam are calculated including contributions from first-order transverse derivatives. This permits a correct description of the energy flow in the beam and the natural emergence of both the spin and the angular momentum of the photons. We show that for collimated beams of light, orbital angular momentum operators do not satisfy the standard commutation rules. Finally, we discuss the application of our theory to some concrete cases.Comment: 10 pages, 2 figure

    Trojan-horse attacks threaten the security of practical quantum cryptography

    Full text link
    A quantum key distribution system may be probed by an eavesdropper Eve by sending in bright light from the quantum channel and analyzing the back-reflections. We propose and experimentally demonstrate a setup for mounting such a Trojan-horse attack. We show it in operation against the quantum cryptosystem Clavis2 from ID~Quantique, as a proof-of-principle. With just a few back-reflected photons, Eve discerns Bob's secret basis choice, and thus the raw key bit in the Scarani-Ac\'in-Ribordy-Gisin 2004 protocol, with higher than 90% probability. This would clearly breach the security of the cryptosystem. Unfortunately in Clavis2 Eve's bright pulses have a side effect of causing high level of afterpulsing in Bob's single-photon detectors, resulting in a high quantum bit error rate that effectively protects this system from our attack. However, in a Clavis2-like system equipped with detectors with less-noisy but realistic characteristics, an attack strategy with positive leakage of the key would exist. We confirm this by a numerical simulation. Both the eavesdropping setup and strategy can be generalized to attack most of the current QKD systems, especially if they lack proper safeguards. We also propose countermeasures to prevent such attacks.Comment: 22 pages including appendix and references, 6+2 figure

    Optimal working points for continuous-variable quantum channels

    Full text link
    The most important ability of a quantum channel is to preserve the quantum properties of transmitted quantum states. We experimentally demonstrate a continuous-variable system for efficient benchmarking of quantum channels. We probe the tested quantum channels for a wide range of experimental parameters such as amplitude, phase noise and channel lengths up to 40 km. The data is analyzed using the framework of effective entanglement. We subsequently are able to deduce an optimal point of operation for each quantum channel with respect to the rate of distributed entanglement. This procedure is a promising candidate for benchmarking quantum nodes and individual links in large quantum networks of different physical implementations.Comment: 5 pages, 4 (colour) figures; v2 changes: Added PACS numbers, corrections to citations/page numbers, minor rephrasin

    Quantum Uncertainty in the Beam Width of Spatial Optical Modes

    Full text link
    We theoretically investigate the quantum uncertainty in the beam width of transverse optical modes and, for this purpose, define a corresponding quantum operator. Single mode states are studied as well as multimode states with small quantum noise. General relations are derived, and specific examples of different modes and quantum states are examined. For the multimode case, we show that the quantum uncertainty in the beam width can be completely attributed to the amplitude quadrature uncertainty of one specific mode, which is uniquely determined by the field under investigation. This discovery provides us with a strategy for the reduction of the beam width noise by an appropriate choice of the quantum state

    Nonlinear and Quantum Optics with Whispering Gallery Resonators

    Full text link
    Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.Comment: This is a review paper with 615 references, submitted to J. Op

    Atmospheric continuous-variable quantum communication

    Full text link
    We present a quantum communication experiment conducted over a point-to-point free-space link of 1.6 km in urban conditions. We study atmospheric influences on the capability of the link to act as a continuous-variable (CV) quantum channel. Continuous polarization states (that contain the signal encoding as well as a local oscillator in the same spatial mode) are prepared and sent over the link in a polarization multiplexed setting. Both signal and local oscillator undergo the same atmospheric fluctuations. These are intrinsically auto-compensated which removes detrimental influences on the interferometric visibility. At the receiver, we measure the Q-function and interpret the data using the framework of effective entanglement. We compare different state amplitudes and alphabets (two-state and four-state) and determine their optimal working points with respect to the distributed effective entanglement. Based on the high entanglement transmission rates achieved, our system indicates the high potential of atmospheric links in the field of CV QKD.Comment: 13 pages, 7 figure
    corecore